Multiparameter Semigroups and Attractors of Reaction-diffusion Equations in R

نویسنده

  • S. V. ZELIK
چکیده

The space-time dynamics generated by a system of reaction-diffusion equations in Rn on its global attractor are studied in this paper. To describe these dynamics the extended (n + 1)-parameter semigroup generated by the solution operator of the system and the n-parameter group of spatial translations is introduced and their dynamic properties are studied. In particular, several new dynamic characteristics of the action of this semigroup on the attractor are constructed, generalizing the notions of fractal dimension and topological entropy, and relations between them are studied. Moreover, under certain natural conditions a description of the dynamics is obtained in terms of homeomorphic embeddings of multidimensional Bernoulli schemes with infinitely many symbols.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Quantitative Homogenization of Analytic Semigroups and Reaction–diffusion Equations with Diophantine Spatial Frequencies

Based on an analytic semigroup setting, we first consider semilinear reaction–diffusion equations with spatially quasiperiodic coefficients in the nonlinearity, rapidly varying on spatial scale ε. Under periodic boundary conditions, we derive quantitative homogenization estimates of order ε on strong Sobolev spaces H in the triangle 0 < γ < min(σ − n/2, 2− σ). Here n denotes spatial dimension. ...

متن کامل

Attractors of partial differential evolution equations and estimates of their dimension

CONTENTS Introduction 151 § 1. Maximal attractors of semigroups generated by evolution equations 156 § 2. Examples of parabolic equations and systems having a maximal attractor 158 § 3. The Hausdorff dimension of invariant sets 164 § 4. Estimate of the change in volume under the action of shift operators generated by linear evolution equations 167 § 5. An upper bound for the Hausdorff dimension...

متن کامل

Attractors for Partly Dissipative Reaction Diffusion SYstems in R^n

In this paper, we study the asymptotic behavior of solutions for the partly dissipative reaction diffusion equations in ‫ޒ‬ n. We prove the asymptotic compact-ness of the solutions and then establish the existence of the global attractor in 2 Ž n .

متن کامل

Pullback Exponential Attractors for Nonautonomous Reaction-Diffusion Equations

Under the assumption that g t ( ) is translation bounded in loc L R L 4 4 ( ; ( )) Ω , and using the method developed in [3], we prove the existence of pullback exponential attractors in H 1 0 ( ) Ω for nonlinear reaction diffusion equation with polynomial growth nonlinearity( p 2 ≥ is arbitrary).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004